Total Pageviews

Friday, September 30, 2011

Enzymes functions, circulatory system and process


What Are Enzymes?
Enzymes are energized protein molecules found in all living cells. They catalyze and regulate all biochemical reactions that occur within the human body. They are also instrumental in digestion. They break down proteins, fats, carbohydrates and fiber making it possible to benefit from the nutrients found in those foods while removing the toxins. Enzymes turn the food we eat into energy and unlock this energy for use in the body. Their presence and strength can be determined by improved blood and immune system functions.
There are three types of enzymes. Our bodies naturally produce two types, digestive and metabolic enzymes as they are needed, while food enzymes can only be consumed orally.
Metabolic Enzymes speed up the chemical reaction within the cells for detoxification and energy production. They enable us to see, hear, feel, move and think. Every organ, every tissue, and all 100 trillion cells in our body depend upon the reaction of metabolic enzymes and their energy factor. Metabolic enzymes are produced by every living cell. However, the liver, pancreas, gallbladder and other organs play a vital role in their production.
Digestive Enzymes are secreted along the digestive tract to break food down into nutrients and waste. This allows nutrients to be absorbed into the blood stream and the waste to be discarded. Human digestive enzymes include ptyalin, pepsin, trypsin, lipase, protease, and amylase. The body does not make cellulase, an enzyme necessary for proper digestion of fiber, so it must be introduced through the raw foods we eat.
Food Enzymes are introduced to the body through the raw foods we eat and through consumption of supplemental enzyme fortifiers. Raw foods naturally contain enzymes, providing a source of digestive enzymes when ingested. However, raw food manifests only enough enzymes to digest that particular food, not enough to have any support systemically. The cooking and processing of food destroys all of its enzymes. Since most of the foods we eat are cooked or processed in some way and since the raw foods we do eat contain only enough enzymes to process that particular food, our bodies must produce the majority of the digestive enzymes we require. For these reasons it is recommended that we supplement our diet with enzymes.
The circulatory system is an organ system that passes nutrients (such as amino acids, electrolytes and lymph), gases, hormones, blood cells, etc. to and from cells in the body to help fight diseases and help stabilize body temperature and pH to maintain homeostasis.
This system may be seen strictly as a blood distribution network, but some consider the circulatory system as composed of the cardiovascular system, which distributes blood,[1] and the lymphatic system,[2] which distributes lymph. While humans, as well as other vertebrates, have a closed cardiovascular system (meaning that the blood never leaves the network of arteries, veins and capillaries), some invertebrate groups have an open cardiovascular system. The most primitive animal phyla lack circulatory systems. The lymphatic system, on the other hand, is an open system.
Circulation Process
As blood begins to circulate, it leaves the heart from the left ventricle and goes into the aorta. The aorta is the largest artery in the body. The blood leaving the aorta is full of oxygen. This is important for the cells in the brain and the body to do their work. The oxygen rich blood travels throughout the body in its system of arteries into the smallest arterioles.
On its way back to the heart, the blood travels through a system of veins. As it reaches the lungs, the carbon dioxide (a waste product) is removed from the blood and replace with fresh oxygen that we have inhaled through the lungs.

What Are Enzymes?
Enzymes are energized protein molecules found in all living cells. They catalyze and regulate all biochemical reactions that occur within the human body. They are also instrumental in digestion. They break down proteins, fats, carbohydrates and fiber making it possible to benefit from the nutrients found in those foods while removing the toxins. Enzymes turn the food we eat into energy and unlock this energy for use in the body. Their presence and strength can be determined by improved blood and immune system functions.
There are three types of enzymes. Our bodies naturally produce two types, digestive and metabolic enzymes as they are needed, while food enzymes can only be consumed orally.
Metabolic Enzymes speed up the chemical reaction within the cells for detoxification and energy production. They enable us to see, hear, feel, move and think. Every organ, every tissue, and all 100 trillion cells in our body depend upon the reaction of metabolic enzymes and their energy factor. Metabolic enzymes are produced by every living cell. However, the liver, pancreas, gallbladder and other organs play a vital role in their production.
Digestive Enzymes are secreted along the digestive tract to break food down into nutrients and waste. This allows nutrients to be absorbed into the blood stream and the waste to be discarded. Human digestive enzymes include ptyalin, pepsin, trypsin, lipase, protease, and amylase. The body does not make cellulase, an enzyme necessary for proper digestion of fiber, so it must be introduced through the raw foods we eat.
Food Enzymes are introduced to the body through the raw foods we eat and through consumption of supplemental enzyme fortifiers. Raw foods naturally contain enzymes, providing a source of digestive enzymes when ingested. However, raw food manifests only enough enzymes to digest that particular food, not enough to have any support systemically. The cooking and processing of food destroys all of its enzymes. Since most of the foods we eat are cooked or processed in some way and since the raw foods we do eat contain only enough enzymes to process that particular food, our bodies must produce the majority of the digestive enzymes we require. For these reasons it is recommended that we supplement our diet with enzymes.
The circulatory system is an organ system that passes nutrients (such as amino acids, electrolytes and lymph), gases, hormones, blood cells, etc. to and from cells in the body to help fight diseases and help stabilize body temperature and pH to maintain homeostasis.
This system may be seen strictly as a blood distribution network, but some consider the circulatory system as composed of the cardiovascular system, which distributes blood,[1] and the lymphatic system,[2] which distributes lymph. While humans, as well as other vertebrates, have a closed cardiovascular system (meaning that the blood never leaves the network of arteries, veins and capillaries), some invertebrate groups have an open cardiovascular system. The most primitive animal phyla lack circulatory systems. The lymphatic system, on the other hand, is an open system.



Circulation Process
As blood begins to circulate, it leaves the heart from the left ventricle and goes into the aorta. The aorta is the largest artery in the body. The blood leaving the aorta is full of oxygen. This is important for the cells in the brain and the body to do their work. The oxygen rich blood travels throughout the body in its system of arteries into the smallest arterioles.
On its way back to the heart, the blood travels through a system of veins. As it reaches the lungs, the carbon dioxide (a waste product) is removed from the blood and replace with fresh oxygen that we have inhaled through the lungs.

What Are Enzymes?
Enzymes are energized protein molecules found in all living cells. They catalyze and regulate all biochemical reactions that occur within the human body. They are also instrumental in digestion. They break down proteins, fats, carbohydrates and fiber making it possible to benefit from the nutrients found in those foods while removing the toxins. Enzymes turn the food we eat into energy and unlock this energy for use in the body. Their presence and strength can be determined by improved blood and immune system functions.
There are three types of enzymes. Our bodies naturally produce two types, digestive and metabolic enzymes as they are needed, while food enzymes can only be consumed orally.
Metabolic Enzymes speed up the chemical reaction within the cells for detoxification and energy production. They enable us to see, hear, feel, move and think. Every organ, every tissue, and all 100 trillion cells in our body depend upon the reaction of metabolic enzymes and their energy factor. Metabolic enzymes are produced by every living cell. However, the liver, pancreas, gallbladder and other organs play a vital role in their production.
Digestive Enzymes are secreted along the digestive tract to break food down into nutrients and waste. This allows nutrients to be absorbed into the blood stream and the waste to be discarded. Human digestive enzymes include ptyalin, pepsin, trypsin, lipase, protease, and amylase. The body does not make cellulase, an enzyme necessary for proper digestion of fiber, so it must be introduced through the raw foods we eat.
Food Enzymes are introduced to the body through the raw foods we eat and through consumption of supplemental enzyme fortifiers. Raw foods naturally contain enzymes, providing a source of digestive enzymes when ingested. However, raw food manifests only enough enzymes to digest that particular food, not enough to have any support systemically. The cooking and processing of food destroys all of its enzymes. Since most of the foods we eat are cooked or processed in some way and since the raw foods we do eat contain only enough enzymes to process that particular food, our bodies must produce the majority of the digestive enzymes we require. For these reasons it is recommended that we supplement our diet with enzymes.
The circulatory system is an organ system that passes nutrients (such as amino acids, electrolytes and lymph), gases, hormones, blood cells, etc. to and from cells in the body to help fight diseases and help stabilize body temperature and pH to maintain homeostasis.
This system may be seen strictly as a blood distribution network, but some consider the circulatory system as composed of the cardiovascular system, which distributes blood,[1] and the lymphatic system,[2] which distributes lymph. While humans, as well as other vertebrates, have a closed cardiovascular system (meaning that the blood never leaves the network of arteries, veins and capillaries), some invertebrate groups have an open cardiovascular system. The most primitive animal phyla lack circulatory systems. The lymphatic system, on the other hand, is an open system.

Circulation Process
As blood begins to circulate, it leaves the heart from the left ventricle and goes into the aorta. The aorta is the largest artery in the body. The blood leaving the aorta is full of oxygen. This is important for the cells in the brain and the body to do their work. The oxygen rich blood travels throughout the body in its system of arteries into the smallest arterioles.
On its way back to the heart, the blood travels through a system of veins. As it reaches the lungs, the carbon dioxide (a waste product) is removed from the blood and replace with fresh oxygen that we have inhaled through the lungs.


 MONETTE CALAMBA
      >>>>>>>>>>  <<<<<<<<<<<<


No comments:

Post a Comment